
SMART ON FHIR

SMART ON FHIR

BASIC CONCEPTS

SMART on FHIR is a specification for reusable health Apps using SMART® und
FHIR technology.

FHIR: next level HL7 standard.
SMART® : Substitutable Medical Apps and Reusable Technology.

To be used in modular medical information systems or patient apps.

SMART ON FHIR

SMART ON FHIR APP

FHIR
SERVER

A

C D

CONTEXT
(APP, DEVICE)

load from some- 
where and launchB

E

BASIC CONCEPTS

SMART ON FHIR

BASIC CONCEPTS

Step A:
User selects a view in her information system, starts a web
application or an app on her device.

Step B:
The SMART on FHIR app is loaded from a (remote) server or
from the device and launched.

Step C:
The SMART on FHIR app launches and requests data from the
FHIR server.

Step D:
The FHIR server responds the data.

Step E:
The SMART on FHIR app presents data to the user and provides
actions, a.s.o.

SMART ON FHIR

SMART APP GALLERY

There is a growing community providing
SMART on FHIR apps.
Most if not all open source and available
under free of charge license on Github;
See SMART App Gallery on https://
apps.smarthealthit.org

https://apps.smarthealthit.org
https://apps.smarthealthit.org

SMART ON FHIR

P DEMO EXAMPLE

P Demo:
An open source SMART on FHIR app published on
Github.
Angular JS based single page Javascript application.
Embedded in a small web application for this demo.

<a href="/pdemo/PDemo.html?iss=https://
launch.smarthealthit.org/v/r2/sim/
eyJrIjoiMSIsImIiOiJzbWFydC03Nzc3NzA1In0/
fhir">

SMART ON FHIR

MY EDUCATIONAL DEMO

Educational demo:
A Javascript server side Web Application
app using the FHIR Client Library from
smarthealthit.org.
Where the FHIR Client Library performs all
the necessary steps for authorization.
And provides an API to access the resources
on the FHIR server.

http://www.apple.com/uk

SMART ON FHIR
AUTHENTICATION & AUTHORIZATION

SMART ON FHIR

SMART AUTHORIZATION

Accessing FHIR resources on a remote FHIR
server is straight forward.
Basic HTTP calls are all we need to retrieve or
alter FHIR resources.
The challenge solved by SMART in FHIR is to
authorize the access to the resources on the
remote FHIR server.

SMART ON FHIR

AUTHORIZATION
SERVERAPP

FHIR SERVER

redirect

authenticate & authorize

authorization code

B

A

B
C

D authorization code & callback URL

Eaccess token (or refresh)

F G

SMART AUTHORIZATION FLOW

SMART ON FHIR

SMART AUTHORIZATION FLOW

Launch:
When launching the app parameter are required to point to
the authorization and resource endpoints.

Step A:
The app redirects to the authorization server where the app
authenticates with client ID and optional secret.

Step B:
The user as resource owner authenticates at the authorization
server and authorizes access to certain scopes (Optional).

 Step C:
The authorization server sends an authorization code to the
app callback URL.

SMART ON FHIR

SMART AUTHORIZATION FLOW

Step D:
The app sends the authorization code to the authorization
server endpoint URL.

Step E:
The authorization server evaluates the authorization code and
sends an access token to the client callback URL.

Step C:
The app requests access to the protected resources from the
FHIR server.

Step F:
The FHIR server evaluates the access token and returns the
protected resources or performs the requested action. 

SMART ON FHIR

SMART AUTHORIZATION FLOW

Refresh
If a refresh token is returned along with 
the access token, the app may use this to request a new
access token, with the same scope, once the access token
expires.

SMART ON FHIR

PROTOCOLS

SMART on FHIR implements specifications from the OAuth 2.0
RFC family.
Beyond other:

HTTPS based transports and authorization codes from OAuth core.
JWT bearer token (RFC 7523).
Dynamic Client registration (RFC7591 & RFC7592).
MAC signatures (optional).

SMART on FHIR additionally specifies the attributes used in the
request and the JWT bearer token.

Note: SMART on FHIR does not implement one of the standard
flows defined in the OAuth 2 core specification.

OAUTH 2.0
SURVEY

OAUTH

WHAT IS OAUTH?

A family of specifications published as RFC for
web based authorization (see https://
tools.ietf.org/wg/oauth/).
A framework for web based authorization with
many options all published as RFC.

https://tools.ietf.org/wg/oauth/
https://tools.ietf.org/wg/oauth/

OAUTH

ROLES

Resource server (the API):
The server hosting user-owned resources that are
protected by OAuth (FHIR server).
The resource server accepts and validates access tokens
and grant the requests on behalf of the resource owner
user.
The resource server does not necessarily need to know
about applications.

OAUTH

ROLES

Resource owner (the user):
The OAuth 2.0 spec refers to the user as the “resource owner.”
Resource owner grant access to their own data hosted on the
resource server.

Client (the third-party app):
An application making API requests to perform actions on
protected resources on behalf of the resource owner.
The client will obtain permission by either directing the user
to the authorization server, or by asserting permission directly
with the authorization server without interaction by the user.

OAUTH

ROLES

Authorization server:
The authorization endpoint is used to interact with the
resource owner and obtain an authorization grant.
The authorization server gets consent from the resource
owner and issues access tokens to clients for accessing
protected resources.
The authorization server may therefore authenticate the
resource owner.

OAUTH

REMARKS

Clients must be registered at the authorization server with it’s client
credentials (client ID and secret), which are used to authenticate the
technical system (Node Authentication).
These credentials are critical in protecting the authenticity of requests
when performing operations such as exchanging authorization codes for
access tokens and refreshing access tokens.
Currently this is weakened to support clients which cannot keep a secret
like mobile apps or single page apps.

OAUTH

REMARKS

Access token are credentials used to access the protected
resources.
Access token can have different formats, structures, and
methods of utilization (e.g., cryptographic properties) based
on the resource server security requirements.
Access token attributes and the methods used to access
protected resources are beyond the scope of the OAuth 2.0
specification and are defined by companion specifications.

OAUTH

REMARKS

Signatures (Optional in SMART):
The MAC Access Authentication specification defines how
clients can sign their OAuth 2.0 requests.
When connecting to OAuth-enabled APIs that require
signatures, each API request must include a MAC signature in
the Authorization header of the request.
Most OAuth 2.0 authorized APIs require only bearer tokens to
make authorized requests.
Bearer tokens are a type of access token whereby simple
possession of the token values provides access to protected
resources.

OAUTH 2.0
GRANT TYPES

OAUTH 2.0 GRANT TYPES

OAUTH 2.0 GRANT TYPES

Core Grant Types
Client Credentials
Authorization Code
Device Code
Refresh Token

Extensions
Assertion Grant Type

Legacy
Implicit Grant
Password Grant

CLIENT CREDENTIALS GRANT TYPE

AUTHORIZATION
SERVERCLIENT

RESOURCE
SERVER

access token

client credentials A

B

C D

CLIENT CREDENTIAL FLOW

CLIENT CREDENTIAL GRANT TYPE

CLIENT CREDENTIAL FLOW

Step A:
Client authenticates with client Id, secret and client
credentials (or other forms of client authentication).

Step B:
Authorisation server returns the access (or refresh token).

Step C:
Client sends request to resource server with access token
in the authorization header.

Step D:
Resource server evaluates the access token and returns
the protected resources.

AUTHORIZATION CODE GRANT TYPE

AUTHORIZATION
SERVERCLIENT

RESOURCE
SERVER

redirect

authenticate & authorize

authorization code

B

A

B

C

D
authorization code and callback URL

Eaccess token (or refresh)

C F

AUTHORIZATION CODE FLOW

AUTHORIZATION CODE GRANT TYPE

AUTHORIZATION CODE FLOW

Step A:
Redirect the user to the authorisation server with client ID and secret.

Step B:
Authorization server authenticates the resource owner.
Resource owner authorises client access to the required resources.

Step C:
Authorisation server redirects to the client with the authorisation code.
Client requests protected resources from the client sending the in
authorization code.

Step D and E:
Resource server resolves the authorisation code to the access token at the
authorisation server.

Step F:
Resource server evaluates the access token and returns the protected
resources.

ASSERTION GRANT TYPE

CLIENTASSERTION
PROVIDER

RESOURCE
SERVER

client ID, callback URL, assertion

access token

A

C

D

E F

authenticate & authorize A

assertionB
AUTHORIZATION

SERVER

ASSERTION GRANT FLOW

ASSERTION GRANT TYPE

ASSERTION GRANT FLOW

Step A:
Redirect to assertion provider server.

Step B:
User authenticates at the assertion provider.
Assertion provider responds the assertion.

Step C:
Redirect to authorization server with assertion.

Step D
Authorization server responds the access token.

Step E:
Client sends request to resource server with access token in authorization
header.

Step F:
Resource server evaluates the access token and returns the protected resources.

IMPLICIT GRANT TYPE (DEPRECTATED)

CLIENT AUTHORIZATION
SERVER

RESOURCE
SERVER

client ID und callback URL

authenticate & authorize

access token

B

A

B

C

D E

IMPLICIT GRANT FLOW

IMPLICIT GRANT TYPE (DEPRECATED)

IMPLICIT GRANT FLOW

Step A:
Redirect to authorisation server with client ID.

Step B:
authorisation server authenticates the resource owner.
Resource owner authorises client access to the required resources.

Step C:
Redirect to client with access token to resource server.

Step D:
Client sends request to resource server with access token.

Step E:
Resource server evaluates the access token and returns the
protected resources.

PASSWORD GRANT TYPE (DEPRECATED)

AUTHORIZATION
SERVERCLIENT

RESOURCE
SERVER

access token

resource owner credentials B

C

D E

A

RESOURCE OWNER PASSWORD FLOW

PASSWORD GRANT TYPE (DEPRECATED)

RESOURCE OWNER PASSWORD FLOW

Step A:
Resource owner present the client the password credentials (of the
resource owner).

Step B:
Clients sends resource owner password credentials to authorisation
server.

Step C:
Authorisation server returns the access (or refresh token).

Step D:
Client sends request to resource server with access token in the
authorization header.

Step E:
Resource server evaluates the access token and returns the protected
resources.

SMART ON FHIR
PROTOCOLS

SMART ON FHIR

SMART AUTHORIZATION FLOW

AUTHORIZATION
SERVERAPP

FHIR SERVER

redirect

authenticate & authorize

authorization code

B

A

B
C

D authorization code & callback URL

Eaccess token (or refresh)

F G

SMART ON FHIR

PROTOCOLS

Step A

The client redirects to the authorization server with the required parameter:

GET authorize?response_type=code&  
client_id=app-client-id&  
http%3A%2F%2Flocalhost%3A9000%2Fcallback&  
launch=xyz123&  
scope=launch+patient%2FObservation.read+  
 patient%2FPatient.read+openid+fhirUser&  
state=98wrghuwuogerg97&  
aud=https://ehr/fhir  
 
HTTP/1.1 Host:localhost:9001

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)
Gecko/20100101 Firefox/39.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: http://localhost:9000/
Connection: keep-alive

SMART ON FHIR

PROTOCOLS

Step C

The authorization server performs a HTTP GET on the callback URL with
the authorization code:

GET /callback?code=8V1pr0rJ&state=98wrghuwuogerg97

HTTP/1.1 Host: localhost:9000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)
Gecko/20100101 Firefox/39.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: http://localhost:9001/authorize?response_type=code&  
client_id=app-client-id&http%3A%2F%2Flocalhost%3A9000%2Fcallback&  
launch=xyz123&scope=launch+patient%2FObservation.read+patient%2FPatient.read+openid+fhirUser&
state=98wrghuwuogerg97&aud=https://ehr/fhir

SMART ON FHIR

PROTOCOLS

Step D:

The client performs an HTTP POST with parameter  
as a form-encoded HTTP entity body, passing its  
client_id and client_secret as an HTTP Basic authorization header.

POST /token  
Host: localhost:9001  
Accept: application/json  
Content-type: application/x-www-form-encoded  
Authorization: Basic bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz

grant_type=authorization_code& redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&  
code=98wrghuwuogerg97

SMART ON FHIR

PROTOCOLS

Step E

The authorization server response carries the access token:

HTTP 200 OK
Date: Fri, 31 Jul 2015 21:19:03 GMT
Content-type: application/json
{

"access_token": "i8hweunweunweofiwweoijewiwe",  
"token_type": "bearer",  
"expires_in": 3600,  
"scope": "patient/Observation.read patient/Patient.read",  
"intent": "client-ui-name",  
"patient": "123",  
"encounter": "456"

}

SMART ON FHIR

PROTOCOLS

Step F

The client performs a HTTP request on the FHIR server URL with the access token in
the authorization header:

GET /resource HTTP/1.1  
Host: localhost:9002  
Accept: application/json  
Connection: keep-alive  
Authorization: Bearer 987tghjkiu6trfghjuytrghj…

SMART ON FHIR

SUMMARY

SMART on FHIR harmonises the way to authenticate and authorise apps using
FHIR resources.
There is a growing community providing free of charge apps that use SMART on
FHIR and are this easy to integrate.

The community also provides libraries for common used programming
languages (Java, Ruby, ECMA Script, C#, …) which simplify implementing your
own SMART on FHIR app.
And even if you don’t want to use the libraries you can implement it on your
own using specifications from the OAuth 2.0 family.

SMART ON FHIR

FINAL REMARKS

With the SMART on FHIR authorization flow we trust the client app but not the
runtime environment (mobile device, Web Browser, …).
This trust model might be problematic in a health care environment and needs
further investigation.

SMART on FHIR currently does not support alternative flows like the Assertion
Grant Flow. This might block the applicability in a more sensitive and restrictive
health care environment like the Swiss EPR.

SMART ON FHIR

REFERENCES

SMART App Gallery - https://apps.smarthealthit.org
SMART launch framework - http://www.hl7.org/fhir/smart-app-launch/

SMART launch scopes and context - http://www.hl7.org/fhir/smart-app-launch/
scopes-and-launch-context/index.html
SMART on FHIR - https://docs.smarthealthit.org
OAuth 2.0 - https://oauth.net/2/

OAuth RFC overview - https://tools.ietf.org/wg/oauth/
Getting started with OAuth 2.0, O’Reilly media (2012)

OAuth 2 in action, Manning Publications (2017)

https://apps.smarthealthit.org
http://www.hl7.org/fhir/smart-app-launch/
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context/index.html
http://www.hl7.org/fhir/smart-app-launch/scopes-and-launch-context/index.html
https://docs.smarthealthit.org
https://oauth.net/2/
https://tools.ietf.org/wg/oauth/

SMART ON FHIR

SPEAKER

Martin Smock

Produktmanager Post CH
Entwicklung und Innovation

Vorstand IHE Suisse
Vendor Co-Chair IHE Europa

QUESTIONS?

